知识大全

知识大全

初一下册数学重点知识 初一下册数学重点归纳

KARI

初一下册数学重点知识 初一下册数学重点归纳

七年级数学下册知识点总结

第一章 整式的运算

一. 整式

※1. 单项式

①由数与字母的积组成的代数式叫做单项式。单独一个数或字母也是单项式。

②单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数.

③一个单项式中,所有字母的指数和叫做这个单项式的次数.

※2.多项式

①几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项叫做常数项.一个多项式中,次数最高项的次数,叫做这个多项式的次数.

②单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数.多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数.多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数.

※3.整式单项式和多项式统称为整式.

二. 整式的加减

¤1. 整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.

¤2. 括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘.

三. 同底数幂的乘法

※同底数幂的乘法法则: (m,n都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:

①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;

②指数是1时,不要误以为没有指数;

③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;

④当三个或三个以上同底数幂相乘时,法则可推广为 (其中m、n、p均为正数);

⑤公式还可以逆用: (m、n均为正整数)

四.幂的乘方与积的乘方

※1. 幂的乘方法则: (m,n都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.

※2. .

※3. 底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,

如将(-a)3化成-a3

※4.底数有时形式不同,但可以化成相同。

※5.要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零)。

※6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即 (n为正整数)。

※7.幂的乘方与积乘方法则均可逆向运用。

五. 同底数幂的除法

※1. 同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即 (a≠0,m、n都是正数,且m>n).

※2. 在应用时需要注意以下几点:

①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.

②任何不等于0的数的0次幂等于1,即 ,如 ,(-2.50=1),则00无意义.

③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即 ( a≠0,p是正整数), 而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的; 当a<0时,a-p的值可能是正也可能是负的,如 ,

④运算要注意运算顺序.

六. 整式的乘法

※1. 单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

单项式乘法法则在运用时要注意以下几点:

①积的系数等于各因式系数积,先确定符号,再计算绝对值。这时容易出现的错误的是,将系数相乘与指数相加混淆;

②相同字母相乘,运用同底数的乘法法则;

③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;

④单项式乘法法则对于三个以上的单项式相乘同样适用;

⑤单项式乘以单项式,结果仍是一个单项式。

※2.单项式与多项式相乘

单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

单项式与多项式相乘时要注意以下几点:

①单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;

②运算时要注意积的符号,多项式的每一项都包括它前面的符号;

③在混合运算时,要注意运算顺序。

※3.多项式与多项式相乘

多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。

多项式与多项式相乘时要注意以下几点:

①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;

②多项式相乘的结果应注意合并同类项;

③对含有同一个字母的一次项系数是1的两个一次二项式相乘 ,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。对于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得到

七.平方差公式

¤1.平方差公式:两数和与这两数差的积,等于它们的平方差,

※即 。

¤其结构特征是:

①公式左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数;

②公式右边是两项的平方差,即相同项的平方与相反项的平方之差。

八.完全平方公式

¤1. 完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,

¤即 ;

¤口决:首平方,尾平方,2倍乘积在中央;

¤2.结构特征:

①公式左边是二项式的完全平方;

②公式右边共有三项,是二项式中二项的平方和,再加上或减去这两项乘积的2倍。

¤3.在运用完全平方公式时,要注意公式右边中间项的符号,以及避免出现 这样的错误。

九.整式的除法

¤1.单项式除法单项式

单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;

¤2.多项式除以单项式

多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数相同,另外还要特别注意符号。

第二章 平行线与相交线

一.台球桌面上的角

※1.互为余角和互为补角的有关概念与性质

如果两个角的和为90°(或直角),那么这两个角互为余角;

如果两个角的和为180°(或平角),那么这两个角互为补角;

注意:这两个概念都是对于两个角而言的,而且两个概念强调的是两个角的数量关系,与两个角的相互位置没有关系。

它们的主要性质:同角或等角的余角相等;

同角或等角的补角相等。

二.探索直线平行的条件

※两条直线互相平行的条件即两条直线互相平行的判定定理,共有三条:

①同位角相等,两直线平行;

②内错角相等,两直线平行;

③同旁内角互补,两直线平行。

三.平行线的特征

※平行线的特征即平行线的性质定理,共有三条:

①两直线平行,同位角相等;

②两直线平行,内错角相等;

③两直线平行,同旁内角互补。

四.用尺规作线段和角

※1.关于尺规作图

尺规作图是指只用圆规和没有刻度的直尺来作图。

※2.关于尺规的功能

直尺的功能是:在两点间连接一条线段;将线段向两方向延长。

圆规的功能是:以任意一点为圆心,任意长度为半径作一个圆;以任意一点为圆心,任意长度为半径画一段弧。

第三章生活中的数据

※1.科学记数法:对任意一个正数可能写成a×10n的形式,其中1≤a<10,n是整数,这种记数的方法称为科学记数法。

¤2.利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位;对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫做这个数的有效数字。

¤3.统计工作包括:

①设定目标;②收集数据;③整理数据;④表达与描述数据;⑤分析结果。

第四章 概率

¤1.随机事件发生与不发生的可能性不总是各占一半,都为50%。

※2.现实生活中存在着大量的不确定事件,而概率正是研究不确定事件的一门学科。

※3.了解必然事件和不可能事件发生的概率。

必然事件发生的概率为1,即P(必然事件)=1;不可能事件发生的概率为0,即P(不可能事件)=0;如果A为不确定事件,那么0<P(A)<1

※4.了解几何概率这类问题的计算方法

事件发生概率=

第五章 三角形

一.认识三角形

1.关于三角形的概念及其按角的分类

由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

这里要注意两点:

①组成三角形的三条线段要“不在同一直线上”;如果在同一直线上,三角形就不存在;

②三条线段“首尾是顺次相接”,是指三条线段两两之间有一个公共端点,这个公共端点就是三角形的顶点。

三角形按内角的大小可以分为三类:锐角三角形、直角三角形、钝角三角形。

2.关于三角形三条边的关系

根据公理“连结两点的线中,线段最短”可得三角形三边关系的一个性质定理,即三角形任意两边之和大于第三边。

三角形三边关系的另一个性质:三角形任意两边之差小于第三边。

对于这两个性质,要全面理解,掌握其实质,应用时才不会出错。

设三角形三边的长分别为a、b、c则:

①一般地,对于三角形的某一条边a来说,一定有|b-c|<a<b+c成立;反之,只有|b-c|<a<b+c成立,a、b、c三条线段才能构成三角形;

②特殊地,如果已知线段a最大,只要满足b+c>a,那么a、b、c三条线段就能构成三角形;如果已知线段a最小,只要满足|b-c|<a,那么这三条线段就能构成三角形。

3.关于三角形的内角和

三角形三个内角的和为180°

①直角三角形的两个锐角互余;

②一个三角形中至多有一个直角或一个钝角;

③一个三角中至少有两个内角是锐角。

4.关于三角形的中线、高和中线

①三角形的角平分线、中线和高都是线段,不是直线,也不是射线;

②任意一个三角形都有三条角平分线,三条中线和三条高;

③任意一个三角形的三条角平分线、三条中线都在三角形的内部。但三角形的高却有不同的位置:锐角三角形的三条高都在三角形的内部,如图1;直角三角形有一条高在三角形的内部,另两条高恰好是它两条边,如图2;钝角三角形一条高在三角形的内部,另两条高在三角形的外部,如图3。

④一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点。

二.图形的全等

¤能够完全重合的图形称为全等形。全等图形的形状和大小都相同。只是形状相同而大小不同,或者说只是满足面积相同但形状不同的两个图形都不是全等的图形。

四.全等三角形

¤1.关于全等三角形的概念

能够完全重合的两个三角形叫做全等三角形。互相重合的顶点叫做对应点,互相重合的边叫做对应边,互相重合的角叫做对应角

所谓“完全重合”,就是各条边对应相等,各个角也对应相等。因此也可以这样说,各条边对应相等,各个角也对应相等的两个三角形叫做全等三角形。

※2.全等三角形的对应边相等,对应角相等。

¤3.全等三角形的性质经常用来证明两条线段相等和两个角相等。

五.探三角形全等的条件

※1.三边对应相等的两个三角形全等,简写为“边边边”或“SSS”

※2.有两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS”

※3.两角和它们的夹边对应相等的两个三角形全等,简写成“角边角”或“ASA”

※4.两角和其中一个角的对边对应相等的两个三角形全等,简写成“角角边”或“AAS”

六.作三角形

1.已知两个角及其夹边,求作三角形,是利用三角形全等条件“角边角”即(“ASA”)来作图的。

2.已知两条边及其夹角,求作三角形,是利用三角形全等条件“边角边”即(“SAS”)来作图的。

3.已知三条边,求作三角形,是利用三角形全等条件“边边边”即(“SSS”)来作图的。

八.探索直三角形全等的条件

※1.斜边和一条直角边对应相等的两个直角三角形全等。简称为“斜边、直角边”或“HL”。这只对直角三角形成立。

※2.直角三角形是三角形中的一类,它具有一般三角形的性质,因而也可用“SAS”、“ASA”、“AAS”、“SSS”来判定。

直角三角形的其他判定方法可以归纳如下:

①两条直角边对应相等的两个直角三角形全等;

②有一个锐角和一条边对应相等的两个直角三角形全等。

③三条边对应相等的两个直角三角形全等。

第七章 生活中的轴对称

※1.如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

※2.角平分线上的点到角两边距离相等。

※3.线段垂直平分线上的任意一点到线段两个端点的距离相等。

※4.角、线段和等腰三角形是轴对称图形。

※5.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。

※6.轴对称图形上对应点所连的线段被对称轴垂直平分。

※7.轴对称图形上对应线段相等、对应角相等。

初一下学期数学重点有哪些?

数学的重点单元是:一、二、四、五、六 相交线与平行线

  

  这部分内容大多数学校在初一上学期已经讲过了。当然,即使上学期学过了,大多学校会在开学时重新进行一下复习巩固。

  

  从相交线和平行线这部分内容开始,就真正开始了初中几何的学习。刚开始很多学生会不习惯几何严密的逻辑证明过程,往往还保留着小学或是初一上学期解决几何问题时,只注重结果的思想。证明题的过程书写不规范是最大的一个问题。所以这部分内容学习的一个重点就是要慢慢培养学生规范的书写,千万不能只满足于题目会做或者会证明这个层次上。

  

  从题型的角度来说,这部分内容主要有2个最为重点的题型:第一类题型就是结合相交线和平行线的性质去考察角度的计算问题,这是中考选择题中几乎每年都会考察的一类题型,需要重点的关注。解这类题一方面要学会灵活的应用相交线和平行线的一些性质,另一方面要掌握一些常见的几何模型,例如“M”角模型等等,这样可以快速准确的解题。

  

  另一类题型就是和平行线相关的证明问题。学习这类题型要注意2点:一是刚才已经说过的对于书写过程的规范性的训练;二是做这类题型的主要目的,是训练学生对于平行线判定方法和平行线性质的深入理解和灵活应用,大家要注意,中考不会单独考察平行线的证明问题,一定会结合三角形或是四边形综合考察,其中涉及到的就是平行线的判定和性质,所以在刚开始学习这类题目时,就要把握住这个大原则,千万不能就题论题。

  

  平面直角坐标系

  

  从学习平面直角坐标系开始,就进入到初中代数很重要的一个大的领域—函数这部分了。初中代数分为三大块:数与式、方程与不等式、函数。前两部分内容,学生在小学阶段都接触过相关的一些内容,所以学起来不会太陌生,上手比较快。但是对于函数的相关知识,学生很少接触过,所以刚开始学会速度慢一些,有时会感觉不太顺手,这些都是很正常的现象,学生和家长也不必过于担心。这其实也是一个好机会,因为大家都没太接触过,基本处于同一条起跑线,只要认真去学,其实是一次重新塑造自己的机会。函数这一大块又可以分为2大部分,一是平面直角坐标系,二是4大类具体的函数(一次函数、正比例函数、反比例函数、二次函数)。中考的重点在第二块内容,但是平面直角坐标系的内容,是学习整个函数的基础,它是我们研究具体函数的工具,再从长远一点说,它是学生高中学习平面解析几何和空间坐标系的基础,所以是很重要的,这一点大家一定要重视。

  

  下面谈一下具体学这部分应该注意的问题。这一部分主要有3个必须要掌握的内容:1.平面直角坐标系的一系列基本概念,比如坐标轴、象限、点的坐标等等。内容不难,但希望刚开始学习时一定打下一个好的基础,学扎实了。2.坐标的对称。这个内容中有一个难点,就是某个点关于另一个点的对称点的求法,是需要学生下一点功夫研究一下的。3.坐标的平移。这部分希望在学习时真正理解平移的内涵,灵活运用。比如说如果点不变,坐标轴平移了,怎么办?像这些问题都是需要灵活处理的。

  

  除了这三部分课本规定的必学内容外,还有2个需要额外学习的,一是特殊直线的表示方法,二是距离。可能一些有经验的老师就会在课上直接给大家补充,如果不补充大家可以找一些课外辅导资料自己学习一下。因为这两部分虽然稍微难一些,但是对于深入理解平面直角坐标系的内容和为后续的一次函数打下基础都是很有好处的,所以希望大家学习一下。特殊直线的表示主要掌握6条特殊直线的表示:x轴、y轴、平行于x轴的直线、平行于y轴的直线、第一和第三象限的角平分线、第二和第四象限的角平分线。距离这部分掌握“点到特殊直线的距离”和“两点之间的距离”这两个内容即可。

三角形的边与角

  

  三角形在初中几何中是由4大块组成:三角形的边与角、全等三角形、直角三角形(含勾股定理和三角函数)、相似三角形。初一下学期“三角形”这部分主要讲解三角形的一些基本概念和三角形的边与角。提醒大家注意的是,三角形可以说是整个初中几何的主线,中考80%以上的几何问题都是会涉及三角形的相关内容的,所以大家一定要引起足够的重视。

  

  学生对于三角形是比较熟悉的,刚上手学应该比较快。三角形的边与角这部分对于学生而言主要有3个相对新的也是比较重要的内容:一是三角形三边之间的关系,当然绝不是只知道“两边之和大于第三边,两边之差小于第三边”这么简单,里面会有很多变式,比如第三边的范围,最长边、最短边与周长的关系等等,这些变式是考试要重点考察的。这些内容学校老师一般会补充一些,春季班我们也会给同学们讲解相关的内容;二是三角形的外角定理。三角形的外角定理本身不难,但是学生刚开始学不习惯用外角定理,总是利用三角形内角和以及平角的关系去求外角,这样就会降低解题速度。即使用了这个定理,也不够灵活,特别是在一些相对复杂的题目中就运用不熟练,这些需要经过一些题目的训练来逐渐掌握这个定理;三是三角形的三线段,即中线、角平分线、高。这3种线段在三角形中的扮演着举足轻重的角色。如果没有这3种线段,三角形本身就好比“光杆司令”一个,丧失了其活力。也就是因为有了这3种线段,三角形才能变幻出各种各样的题目。刚开始学重点是掌握这3种线段的一些基本性质即可,为后面的学习打下基础。

  

  同时,希望大家能把等腰三角形作为一个专题拿出来系统研究一下。因为在很多三角形的题目中,往往是以等腰三角形为背景出的。等腰三角中有很多可以挖掘的东西,比如基础一点的内容,像两底角相等,再深入一点的,像“三线合一”性质等等,希望大家能够全面的总结一下,为后面遇到等腰三角形的问题铺平道路。

  

  课本中在这一部分还讲到了多边形。一般来时,中考对于多边形的考察每年就是一道选择题或是一道填空题。这道题目围绕两个命题方向,一是多边形的基本知识,比如内角和公式等等。另一命题趋势是由于是多边形,边数不定,所以非常容易出找规律的问题,即把边数过渡到n条,问一些像有多少条对角线等等这一类的问题。所以在刚开始学多边形时,就从这两个角度出发,一是掌握多边形的一些基本概念,另一个就是总结一些多边形规律性的东西,做一些找规律的题目,应该说就没有大的问题了。

 

  二元一次方程组

  

  方程是初中代数非常重要的内容。初一上学期同学们学习了一元一次方程。有了这个基础,再去学习二元一次方程组应该是比较轻松的。其实很多同学已经会解一般类型的二元一次方程组了。

  

  面对这样一种情况,无论是否已经学过二元一次方程组的解法,需要强调的是,对于代入消元和加减消元这两种方法还是要进行大量的练习,很多学生存在眼高手低的问题,“一看就会解,一解就出错”,说明训练还不够。在保证基本类型能够准确熟练的完成这个前提下,还要学习两个内容:一是二元一次方程组的应用题。一元一次方程的应用题就让很多同学比较犯愁,这也是初一上学期最大的难点,现在又来了二元一次方程组的应用题,怎么办?我的观点是首先还是要克服解应用题的恐慌思想,树立信心。其次去研究不同类型的应用题的思路和解法,最终达到触类旁通的目的。当然应用题涉及的问题比较多,以后找个机会和大家详细交流一下,今天大概的说一下。除了应用题外,希望能够去学习一下一些特殊方程组的解法,比如倒数型的,系数互换型的等等,这些在寒假班也讲了一些,希望能够拿出来复习一下。

  

  最后说一点,除了这些课本上的内容外,还希望大家能够学习一些不定方程的知识。不定方程不是一个重点内容,中考也不会单独考察。但是往往在学习其它内容或是解某些题目时是会用到不定方程的内容,所以建议还是学一下。也不用掌握太多的东西,就是能够会解一些简单的不定方程即可,其它内容不用深究。

不等式与不等式组

  

  不等式与不等式组是初一下学期的一个重点内容。学习这一部分可以把解不等式作为一个学习的主线。解不等式主要集中于两大类型:不含参量的不等式和含参量的不等式问题。不含参量的一元一次不等式可以类比于解一元一次方程去学习,只是在最后一步系数化为1时要注意,如果系数为负数,要注意变号。这是刚开始学解不等式最容易出错的地方。对于含参量的不等式,一定要学会“分类讨论”的思想,即对参量进行分类讨论后,转化成一般类型的不等式的解法。“分类讨论的思想”是初中代数中非常重要的一个内容,在后面学习的很多内容中比如一元二次方程等等,都会涉及这个问题,所以一定要重视。在掌握了不等式的解法后,不等式组的求解就相对简单了。

  

  除了学会求解不等式这一核心问题外,还要掌握两类非常重要的题型:一是求含有参量的不等式中参量的值或范围问题。这类问题的特征是一般会给出我们含参的不等式或者不等式组和它们的解集,让我们求参量的范围或者具体值。解这类问题,还是要先带着参量去解不等式,然后去比较解出来的解集和题目给出的解集,由于两者是一致的,通过比较来确定参量的范围或求出参量的值。在求不等式组的参量范围的问题中,还往往要用到“数形结合”的方法。第二大类是题型是和不等式相关的应用性问题。比如说最值问题,比如说一些实际的应用题等等。这些问题在寒假班已经给学生讲过一些,春季班还会继续深入的去给同学分析,希望大家给予重视。

 

  数据的收集、整理与描述

  

  数据的收集、整理与描述属于统计的内容。课改以后,为了使数学更加贴近生活、培养学生的多元知识体系以及进一步提高学生对数学的兴趣,概率与统计的内容进入了初中课本,改变了长期以来代数和几何两大部分统治初中课本的情况。但是,这部分内容毕竟很少也很简单,还不能和代数、几何相提并论。每年的中考对于这一大块的考察是非常明确的。就是“1大加2小”,即一道大题6分,考察统计的内容;两道选择题,每题4分,一道考察统计的内容,一道考察概率的内容。一共是14分。

  

  概率与统计分为概率的初步知识和统计两大部分。概率的初步知识会在初三上学期学习。统计这部分以数据为主线,分为数据的收集、整理、描述、分析4大部分。初一下学习前三部分,初二学习数据的分析。

  

  概率与统计本身是数学一个很大的分支。但是要和大家说的是,在初中阶段所学的概率与统计的内容只是一些最基础的知识,内容不多也很简单,同时很贴近生活,学起来相对比较轻松。就初一下这部分而言,大家重点是掌握一些统计的基本概念以及描述数据时所使用的4种常见图形即可。特别是条形图和扇形图,是这几年中考经常在大题中考察的,应给予特别关注。

 

  全等三角形

  

  如果说三角形是初中几何的核心,那么全等三角形就是核心中的核心。因为在初中涉及的三角形4大块内容中(在分析三角形的边与角时,给大家做过介绍),比较有难度的就是全等和相似两大部分。但是现在无论大纲的要求还是中考的要求,对于相似三角形部分在逐渐降低,中考考相似的内容现在也非常少。在这种背景下,全等三角形必然就成为了整个三角形内容体系中的核心。三角形虽然是初二上的内容,但是考虑到它的重要位置以及追赶进度的需要,北京几乎所有的学校都会把全等三角形放到初一下学期来讲。

  

  全等三角形的知识体系本身其实并不多,就是性质和判定。性质就是4个量相等,即对应边相等、对应角相等、周长相等、面积相等。判定就是5条判定定理,即SSS、SAS、ASA、AAS、HL。内容虽然不多,但是由全等三角形变换出来的三角形相关的证明题可谓是五花八门。这些问题最重要的就是在考察学生两大块能力:一是灵活运用全等三角形的性质和判定的能力;二是应对全等三角形和其它几何问题综合考察的能力。

  

  分析清楚了所要考察学生的主要能力后,那么在学习过程中就可以有的放矢。首先,在学习判定时,一定要彻底理解为什么这5条判定定理可以证明三角形全等,不要死记,对于容易出错的地方,比如SSA这样的错误,一定要自己记住一两个例子,这样就不容易犯错。其次,刚开始做相关的题目时,不要认为题目简单就不重视,一定要通过这些简单的题目,再去理解全等三角形的性质和判定。再次,后续学生会做一些难题,可能要添加辅助线,很多同学会很头大,感觉没有思路,这也确实是几何证明题的一个难点,但是告诉大家,很多辅助线的添加是有一定方法的,比如说见到角平分线,如果在角的两边上见到垂线,则辅助线一般就是再做一条垂线,如果没有见到垂线,则辅助线一般就是截一段和某条已知线段相等的线段。这就是我经常给学生总结的“遇到角分线,看见垂线做垂线,不见垂线做截线”。学生既好记,又能很快的添加出相应的辅助线。像这些内容是要积累的。最后,要做好几何证明题,必须要多做一些题目,特别是那些经典的,非常好的题目,要反复的练,因为很多考试题往往就是从这些题目中改变或是组合而来的。当然,这需要老师做一些工作,给学生筛选出一些好题。春季班时,会拿出2节课给大家讲解全等三角形这一大块内容

初一下册数学知识总结

北师大版初中数学定理知识点汇总[七年级下册(北师大版)]

第一章 整式的运算

一. 整式

※1. 单项式

①由数与字母的积组成的代数式叫做单项式。单独一个数或字母也是单项式。

②单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数.

③一个单项式中,所有字母的指数和叫做这个单项式的次数.

※2.多项式

①几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项叫做常数项.一个多项式中,次数最高项的次数,叫做这个多项式的次数.

②单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数.多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数.多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数.

※3.整式单项式和多项式统称为整式.

二. 整式的加减

¤1. 整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.

¤2. 括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘.

三. 同底数幂的乘法

※同底数幂的乘法法则: (m,n都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:

①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;

②指数是1时,不要误以为没有指数;

③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;

④当三个或三个以上同底数幂相乘时,法则可推广为 (其中m、n、p均为正数);

⑤公式还可以逆用: (m、n均为正整数)

四.幂的乘方与积的乘方

※1. 幂的乘方法则: (m,n都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.

※2. .

※3. 底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,

如将(-a)3化成-a3

※4.底数有时形式不同,但可以化成相同。

※5.要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零)。

※6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即 (n为正整数)。

※7.幂的乘方与积乘方法则均可逆向运用。

五. 同底数幂的除法

※1. 同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即 (a≠0,m、n都是正数,且m>n).

※2. 在应用时需要注意以下几点:

①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.

②任何不等于0的数的0次幂等于1,即 ,如 ,(-2.50=1),则00无意义.

③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即 ( a≠0,p是正整数), 而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的; 当a<0时,a-p的值可能是正也可能是负的,如 ,

④运算要注意运算顺序.

六. 整式的乘法

※1. 单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

单项式乘法法则在运用时要注意以下几点:

①积的系数等于各因式系数积,先确定符号,再计算绝对值。这时容易出现的错误的是,将系数相乘与指数相加混淆;

②相同字母相乘,运用同底数的乘法法则;

③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;

④单项式乘法法则对于三个以上的单项式相乘同样适用;

⑤单项式乘以单项式,结果仍是一个单项式。

※2.单项式与多项式相乘

单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

单项式与多项式相乘时要注意以下几点:

①单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;

②运算时要注意积的符号,多项式的每一项都包括它前面的符号;

③在混合运算时,要注意运算顺序。

※3.多项式与多项式相乘

多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。

多项式与多项式相乘时要注意以下几点:

①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;

②多项式相乘的结果应注意合并同类项;

③对含有同一个字母的一次项系数是1的两个一次二项式相乘 ,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。对于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得到

七.平方差公式

¤1.平方差公式:两数和与这两数差的积,等于它们的平方差,

※即 。

¤其结构特征是:

①公式左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数;

②公式右边是两项的平方差,即相同项的平方与相反项的平方之差。

八.完全平方公式

¤1. 完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,

¤即 ;

¤口决:首平方,尾平方,2倍乘积在中央;

¤2.结构特征:

①公式左边是二项式的完全平方;

②公式右边共有三项,是二项式中二项的平方和,再加上或减去这两项乘积的2倍。

¤3.在运用完全平方公式时,要注意公式右边中间项的符号,以及避免出现 这样的错误。

九.整式的除法

¤1.单项式除法单项式

单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;

¤2.多项式除以单项式

多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数相同,另外还要特别注意符号。

第二章 平行线与相交线

一.台球桌面上的角

※1.互为余角和互为补角的有关概念与性质

如果两个角的和为90°(或直角),那么这两个角互为余角;

如果两个角的和为180°(或平角),那么这两个角互为补角;

注意:这两个概念都是对于两个角而言的,而且两个概念强调的是两个角的数量关系,与两个角的相互位置没有关系。

它们的主要性质:同角或等角的余角相等;

同角或等角的补角相等。

二.探索直线平行的条件

※两条直线互相平行的条件即两条直线互相平行的判定定理,共有三条:

①同位角相等,两直线平行;

②内错角相等,两直线平行;

③同旁内角互补,两直线平行。

三.平行线的特征

※平行线的特征即平行线的性质定理,共有三条:

①两直线平行,同位角相等;

②两直线平行,内错角相等;

③两直线平行,同旁内角互补。

四.用尺规作线段和角

※1.关于尺规作图

尺规作图是指只用圆规和没有刻度的直尺来作图。

※2.关于尺规的功能

直尺的功能是:在两点间连接一条线段;将线段向两方向延长。

圆规的功能是:以任意一点为圆心,任意长度为半径作一个圆;以任意一点为圆心,任意长度为半径画一段弧。

第三章生活中的数据

※1.科学记数法:对任意一个正数可能写成a×10n的形式,其中1≤a<10,n是整数,这种记数的方法称为科学记数法。

¤2.利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位;对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫做这个数的有效数字。

¤3.统计工作包括:

①设定目标;②收集数据;③整理数据;④表达与描述数据;⑤分析结果。

第四章 概率

¤1.随机事件发生与不发生的可能性不总是各占一半,都为50%。

※2.现实生活中存在着大量的不确定事件,而概率正是研究不确定事件的一门学科。

※3.了解必然事件和不可能事件发生的概率。

必然事件发生的概率为1,即P(必然事件)=1;不可能事件发生的概率为0,即P(不可能事件)=0;如果A为不确定事件,那么0<P(A)<1

※4.了解几何概率这类问题的计算方法

事件发生概率=

第五章 三角形

一.认识三角形

1.关于三角形的概念及其按角的分类

由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

这里要注意两点:

①组成三角形的三条线段要“不在同一直线上”;如果在同一直线上,三角形就不存在;

②三条线段“首尾是顺次相接”,是指三条线段两两之间有一个公共端点,这个公共端点就是三角形的顶点。

三角形按内角的大小可以分为三类:锐角三角形、直角三角形、钝角三角形。

2.关于三角形三条边的关系

根据公理“连结两点的线中,线段最短”可得三角形三边关系的一个性质定理,即三角形任意两边之和大于第三边。

三角形三边关系的另一个性质:三角形任意两边之差小于第三边。

对于这两个性质,要全面理解,掌握其实质,应用时才不会出错。

设三角形三边的长分别为a、b、c则:

①一般地,对于三角形的某一条边a来说,一定有|b-c|<a<b+c成立;反之,只有|b-c|<a<b+c成立,a、b、c三条线段才能构成三角形;

②特殊地,如果已知线段a最大,只要满足b+c>a,那么a、b、c三条线段就能构成三角形;如果已知线段a最小,只要满足|b-c|<a,那么这三条线段就能构成三角形。

3.关于三角形的内角和

三角形三个内角的和为180°

①直角三角形的两个锐角互余;

②一个三角形中至多有一个直角或一个钝角;

③一个三角中至少有两个内角是锐角。

4.关于三角形的中线、高和中线

①三角形的角平分线、中线和高都是线段,不是直线,也不是射线;

②任意一个三角形都有三条角平分线,三条中线和三条高;

③任意一个三角形的三条角平分线、三条中线都在三角形的内部。但三角形的高却有不同的位置:锐角三角形的三条高都在三角形的内部,如图1;直角三角形有一条高在三角形的内部,另两条高恰好是它两条边,如图2;钝角三角形一条高在三角形的内部,另两条高在三角形的外部,如图3。

④一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点。

二.图形的全等

¤能够完全重合的图形称为全等形。全等图形的形状和大小都相同。只是形状相同而大小不同,或者说只是满足面积相同但形状不同的两个图形都不是全等的图形。

四.全等三角形

¤1.关于全等三角形的概念

能够完全重合的两个三角形叫做全等三角形。互相重合的顶点叫做对应点,互相重合的边叫做对应边,互相重合的角叫做对应角

所谓“完全重合”,就是各条边对应相等,各个角也对应相等。因此也可以这样说,各条边对应相等,各个角也对应相等的两个三角形叫做全等三角形。

※2.全等三角形的对应边相等,对应角相等。

¤3.全等三角形的性质经常用来证明两条线段相等和两个角相等。

五.探三角形全等的条件

※1.三边对应相等的两个三角形全等,简写为“边边边”或“SSS”

※2.有两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS”

※3.两角和它们的夹边对应相等的两个三角形全等,简写成“角边角”或“ASA”

※4.两角和其中一个角的对边对应相等的两个三角形全等,简写成“角角边”或“AAS”

六.作三角形

1.已知两个角及其夹边,求作三角形,是利用三角形全等条件“角边角”即(“ASA”)来作图的。

2.已知两条边及其夹角,求作三角形,是利用三角形全等条件“边角边”即(“SAS”)来作图的。

3.已知三条边,求作三角形,是利用三角形全等条件“边边边”即(“SSS”)来作图的。

八.探索直三角形全等的条件

※1.斜边和一条直角边对应相等的两个直角三角形全等。简称为“斜边、直角边”或“HL”。这只对直角三角形成立。

※2.直角三角形是三角形中的一类,它具有一般三角形的性质,因而也可用“SAS”、“ASA”、“AAS”、“SSS”来判定。

直角三角形的其他判定方法可以归纳如下:

①两条直角边对应相等的两个直角三角形全等;

②有一个锐角和一条边对应相等的两个直角三角形全等。

③三条边对应相等的两个直角三角形全等。

第七章 生活中的轴对称

※1.如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

※2.角平分线上的点到角两边距离相等。

※3.线段垂直平分线上的任意一点到线段两个端点的距离相等。

※4.角、线段和等腰三角形是轴对称图形。

※5.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。

※6.轴对称图形上对应点所连的线段被对称轴垂直平分。

※7.轴对称图形上对应线段相等、对应角相等。

(注:※表示重点部分;¤表示了解部分;◎表示仅供参阅部分;)

初一下册 数学的概念和重点

一定要记住的几个定理:1.三角形的内角和是180度。

2.三角形中任意的两条边长的和要大于第三条边,其两边边长的差要小于第三条边。

3.三角形的外角和内角概念。

4.三角形的外和是360度。

5.多边形的对角线的概念,从一点引出的对角线的条数

是多边形的边数-2,全部对角线是【多边形的边数*(多边形的边数-2)】/2.

6.多边形可以分成的三角形数是多边形的边数-3。多边形的内角和是(多边形的边数-3)*180度.

7.镶嵌的概念,镶嵌的条件是其度数是360度 常见的初中数学公式

1 过两点有且只有一条直线

2 两点之间线段最短

3 同角或等角的补角相等

4 同角或等角的余角相等

5 过一点有且只有一条直线和已知直线垂直

6 直线外一点与直线上各点连接的所有线段中,垂线段最短

7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行

8 如果两条直线都和第三条直线平行,这两条直线也互相平行

9 同位角相等,两直线平行

10 内错角相等,两直线平行

11 同旁内角互补,两直线平行

12两直线平行,同位角相等

13 两直线平行,内错角相等

14 两直线平行,同旁内角互补

15 定理 三角形两边的和大于第三边

16 推论 三角形两边的差小于第三边

17 三角形内角和定理 三角形三个内角的和等于180°

18 推论1 直角三角形的两个锐角互余

19 推论2 三角形的一个外角等于和它不相邻的两个内角的和

20 推论3 三角形的一个外角大于任何一个和它不相邻的内角

21 全等三角形的对应边、对应角相等

22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等

23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等

24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等

25 边边边公理(SSS) 有三边对应相等的两个三角形全等

26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等

27 定理1 在角的平分线上的点到这个角的两边的距离相等

28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上

29 角的平分线是到角的两边距离相等的所有点的集合

30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)

31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

33 推论3 等边三角形的各角都相等,并且每一个角都等于60°

34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35 推论1 三个角都相等的三角形是等边三角形

36 推论 2 有一个角等于60°的等腰三角形是等边三角形

37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

38 直角三角形斜边上的中线等于斜边上的一半

39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等

40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

42 定理1 关于某条直线对称的两个图形是全等形

43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形

48定理 四边形的内角和等于360°

49四边形的外角和等于360°

50多边形内角和定理 n边形的内角的和等于(n-2)×180°

51推论 任意多边的外角和等于360°

52平行四边形性质定理1 平行四边形的对角相等

53平行四边形性质定理2 平行四边形的对边相等

54推论 夹在两条平行线间的平行线段相等

55平行四边形性质定理3 平行四边形的对角线互相平分

56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形

57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形

初一数学下学期主要有哪些知识点,急

第五章:

本章重点:一元一次不等式的解法,

本章难点:了解不等式的解集和不等式组的解集的确定,正确运用

不等式基本性质3。

本章关键:彻底弄清不等式和等式的基本性质的区别.

(1)不等式概念:用不等号(“≠”、“<”、“>”)表示的不 等关系的式子叫做不等式

(2)不等式的基本性质,它是解不等式的理论依据.

(3)分清不等式的解集和解不等式是两个完全不同的概念.

(4)不等式的解一般有无限多个数值,把它们表示在数轴上,(5)一元一次不等式的概念、解法是本章的重点和核心

(6)一元一次不等式的解集,在数轴上表示一元一次不等式的解集

(7)由两个一元一次不等式组成的一元一次不等式组.一元一次不等式组可以由几个(同未知数的)一元一次不等式组成

(8).利用数轴确定一元一次不等式组的解集

第六章:

1.二元一次方程,二元一次方程组以及它的解,明确二元一次方程组的解是一对未知数的值,会检验一对数值是不是某一个二元一次方程组的解.

2.一次方程组的两种基本解法,能灵活运用代入法,加减法解二元一次方程组及简单的三元一次方程组.

3.根据给出的应用问题,列出相应的二元一次方程组或三元一次方程组,从而求出问题的解,并能根据问题的实际意义,检查结果是否合理.

本章的重点是:二元一次方程组的解法——代入法,加减法以及列一次方程组解简单的应用问题.

本章的难点是:

1.会用适当的消元方法解二元一次方程组及简单的三元一次方程组;

2.正确地找出应用题中的相等关系,列出一次方程组.

第七章

本章重点是:整式的乘除运算,特别是对幂的运算及乘法公式的应用要达到熟练程度.

本章难点是:对乘法公式结构特征和公式中字母意义的理解及乘法公式的灵活应用

1.幂的运算性质,正确地表述这些性质,并能运用它们熟练地进行有关计算.

2.单项式乘以(或除以)单项式,多项式乘以(或除以)单项式,以及多项式乘以多项式的法则,熟练地运用它们进行计算.

3.乘法公式的推导过程,能灵活运用乘法公式进行计算.

4.熟练地运用运算律、运算法则进行运算,

5.体会用字母表示数和用字母表示式子的意义.通过式的变形,深入理解转化的思想方法.

第八章:

1、认识事物的几种方法:观察与实验 归纳与类比 猜想与证明 生活中的说理 数学中的说理

2、定义、命题、公理、定理

3、简单几何图形中的推理

4、余角、补交、对顶角

5、平行线的判定

判定:一个公理两个定理。

公理:两直线被第三条直线所截,如果同位角相等(数量关系)两直线平行(位置关系)

定理:内错角相等(数量关系)两直线平行(位置关系)

定理:同旁内角互补(数量关系)两直线平行(位置关系).

平行线的性质:

两直线平行,同位角相等

两直线平行,内错角相等

两直线平行,同旁内角互补

由图形的“位置关系”确定“数量关系”

第九章:

重点:因式分解的方法,

难点:分析多项式的特点,选择适合的分解方法

1. 因式分解的概念;

2.因式分解的方法:提取公因式法、公式法、分组分解法(十字相乘法)

3.运用因式分解解决一些实际问题.(包括图形习题)

第十章:

重点是:用统计知识解决现实生活中的实际问题.

难点是:用统计知识解决实际问题.

1.统计初步的基本知识,平均数、中位数、众数等的计算、

2.了解数据的收集与整理、绘画三种统计图.

3.应用统计知识解决实际问题能解决与统计相关的综合问题.

典型例题从书本上很容易找到。

TAG: 下册